Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda

نویسندگان

  • Matthew J. Burak
  • Kip E. Guja
  • Miguel Garcia-Diaz
چکیده

8-Oxo-7,8,-dihydro-2'-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala(510) and Asn(513), play differential roles in dNTP selectivity. Specifically, Ala(510) and Asn(513) facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase γ replication fidelity

Replication of the mitochondrial genome by DNA polymerase gamma requires dNTP precursors that are subject to oxidation by reactive oxygen species generated by the mitochondrial respiratory chain. One such oxidation product is 8-oxo-dGTP, which can compete with dTTP for incorporation opposite template adenine to yield A-T to C-G transversions. Recent reports indicate that the ratio of undamaged ...

متن کامل

A novel mechanism of selectivity against AZT by the human mitochondrial DNA polymerase

Native nucleotides show a hyperbolic concentration dependence of the pre-steady-state rate of incorporation while maintaining concentration-independent amplitude due to fast, largely irreversible pyrophosphate release. The kinetics of 3'-azido-2',3'-dideoxythymidine (AZT) incorporation exhibit an increase in amplitude and a decrease in rate as a function of nucleotide concentration, implying th...

متن کامل

Incorporation of the guanosine triphosphate analogs 8-oxo-dGTP and 8-NH2-dGTP by reverse transcriptases and mammalian DNA polymerases.

We have measured the efficiencies of utilization of 8-oxo-dGTP and 8-NH2-dGTP by human immunodeficiency virus type 1 and murine leukemia virus reverse transcriptases and compared them to those of DNA polymerases alpha and beta. Initially, we carried out primer extension reactions in the presence of dGTP or a dGTP analog and the remaining three dNTPs using synthetic DNA and RNA templates. These ...

متن کامل

The m6A methylation perturbs the Hoogsteen pairing-guided incorporation of an oxidized nucleotide† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02340e Click here for additional data file.

Natural nucleic acid bases can formWatson–Crick (WC) or Hoogsteen (HG) base pairs. Importantly, 8-oxo20-deoxyguanosine (8-oxo-dG) in DNA or 8-oxo-dG 50-triphosphate (8-oxo-dGTP) favors a syn conformation because of the steric repulsion between O8 and O40 of the deoxyribose ring. 8-oxo-dGTP can be incorporated into DNA opposite the templating adenine (A) using HG pairing as the dominant mechanis...

متن کامل

Error-Free Bypass of 7,8-dihydro-8-oxo-2′-deoxyguanosineby DNA Polymerase of Pseudomonas aeruginosa Phage PaP1

As one of the most common forms of oxidative DNA damage, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) generally leads to G:C to T:A mutagenesis. To study DNA replication encountering 8-oxoG by the sole DNA polymerase (Gp90) of Pseudomonasaeruginosa phage PaP1, we performed steady-state and pre-steady-state kinetic analyses of nucleotide incorporation opposite 8-oxoG by Gp90 D234A that lacks exo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015